Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(47): 53403-53408, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33191727

RESUMO

Metal-based antiperspirants have been in use for centuries; however, there is an increasing consumer demand for a metal-free alternative that works effectively. Here, we develop an artificial sweat duct rig and demonstrate an alternative, metal-free approach to antiperspiration. Instead of clogging sweat ducts with metal salts, we use a hygroscopic material to induce the evaporation of sweat as it approaches the outlet (i.e. pore) of the sweat duct. As a result, the sweat dehydrates almost completely while still being inside of the duct, forming a natural gel-like salt plug that halts the flow. We show that the critical pressure gradient within the duct (∼3 kPa), beneath which clogging occurs, can be rationalized by balancing the mass flow rates of the liquid (Poiseuille's law) and the evaporative vapor (Fick's law).


Assuntos
Órgãos Artificiais , Suor/química , Antiperspirantes/química , Antiperspirantes/farmacologia , Metais/química , Pressão , Sais/química , Sudorese/efeitos dos fármacos
2.
Langmuir ; 36(8): 1871-1877, 2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32068407

RESUMO

Hygroscopic materials are widely used as desiccants for applications including food production, packaging, anti-icing, and gas storage. Current techniques for quantifying the hygroscopicity of materials, such as the use of a tandem differential mobility analyzer or a gravimetric vapor sorption analyzer, require complex and expensive setups. Here, we show that the hygroscopicity of any bulk material can be simply characterized by suspending it above a deposited droplet and measuring the droplet's evaporation rate. By controlling the temperature of the droplet to correspond to the dew point, we ensured that any evaporation was directly correlated with diffusive transport into the low-pressure hygroscopic material. Using Fick's law, the effective water vapor concentration of each material was extracted and nondimensionalized by the saturation concentration to obtain a hygroscopic index. This nondimensional index ranges from 0 (no hygroscopicity) to 1 (null vapor pressure) and can also be conceptualized as 1 - aw, where aw is the material's water activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...